Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Claudia Alcaraz Zini

Claudia Alcaraz Zini

Universidade Federal do Rio Grande do Sul, Brazil

Title: GC×GC/qMS in the analysis of bio-oils from pyrolysis of biomass

Biography

Biography: Claudia Alcaraz Zini

Abstract

In this work, the main results of the use of comprehensive two-dimensional gas chromatography (GC×GC) in the analysis of bio-oils derived from biomass pyrolysis coming from Brazilian biodiversity, will be discussed. Th e fi rst part of our research involved the characterization of bio-oils from sugarcane straw and rice husk. From these biomasses, methods of research were defi ned according to biomass structure (using thermo-gravimetry and infrared spectroscopy) which allowed classifying them into diff erent groups with diff erent bio-oil composition. Th en, we began to work not only with the original purpose (generation of biofuels), but with the possibility of using this material as a source of raw materials for the chemical industry. Aiming this objective, the biomasses chosen for this study were: Sugarcane straw, rice husk, peach kernel, coconut fi ber, palm fiber, coff ee residue, tobacco seed, crambe seed, furniture industry waste, and pulp and paper industry waste among others. The use of GC×GC allowed the identifi cation and semi-quantitation of several products from the studied biomasses. In addition, the structured presentation of results allowed the identifi cation of a much larger number of compounds, compared with the literature, for these classes of compounds, and even solving problems of unclear identifi cation due to co-eluting compounds. This technique allows a separation in two-dimensional space using two columns of diff erent polarity and also has the possibility of increasing the identifi cation through the construction of curves (dispersion graphics) which can be extrapolated to families of compounds. Thus, in all biomasses studied, high levels of oxygenated compounds, mainly phenols derived from lignin were found. In biomass group, most lignocellulosic material (wood derivatives, straw and peel) were found with high levels of ketones and furans (derived from cellulose). In biomass derived from oilseeds (palm oil, crambe), acids and fatty esters, undecomposed and lighter acids were found, depending on the pyrolysis temperature. Th e tobacco and coff ee biomasses, produced bio-oils with high nitrogen content, especially pyridines. Another important factor considered was the use of catalysts. These were tested in the biomass sugarcane straw and wood waste, increasing, signifi cantly, the amount of hydrocarbons (saturated and aromatic). Th us, it can be concluded that the GC×GC technique allows a complete characterization of bio-oils generating data for their potential industrial use.