Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Muhammad Azam Saeed

Muhammad Azam Saeed

University of Leeds, UK

Title: Explosibility and Burning Properties of Pulverised Rice Husk and their Dependence on Particle Size

Biography

Biography: Muhammad Azam Saeed

Abstract

Renewable biomass crop residues are a viable and low cost fuel option for power generation plants. For an agricultural country like Pakistan this locally accessible fuel source can be used as a substitute for coal for a more environmentally friendly, distributed grid of smaller power generation plants. However, these alternative fuels have unquantified fire/explosion risks associated with their handling and also unknown burning characteristics which will affect the burner design. Reliable measurements of the reactivity parameters for these biofuels depend on a number of factors arising from their chemical and physical properties. In this work, fundamental properties such as flame speeds, burning velocities, maximum pressure and the explosibility coefficient have been measured for different size fractions of a selected rice husk crop residue using a modified 1 m3 vessel. Explosibility properties were found to be more severe for the finer fractions compared to the coarser sizes. MEC were measured to be from 0.4 for the finest fraction to 2.1 for coarser fraction in terms of actual burnt equivalence ratio. Most reactive concentration was measured at low equivalence ratio for fine fraction as compared to coarse size fraction. Peak volume normalised rate of pressure rise for fine fraction was measured to be 83 bar m/s higher than 33 bar m/s for the coarse fraction. Surface morphological study showed more fines contributing in flame propagation leaving coarse particles partially burnt. The finer powder samples were also shown to have a higher ash content which may adversely affect the burning rates and pre-washing of the samples may eliminate some of the inert content and improve burning characteristics.