Viridiana Santana Ferreira
National Institute of Technology, Brazil
Title: Biological Hydrogen production from different waste materials
Biography
Biography: Viridiana Santana Ferreira
Abstract
Hydrogen (H2) is an attractive and valuable gas that might be employed in different industries, either as reactant or as combustible. The combustion of this fuel produces water as its only product and generates 142 kJ.g-1, which is almost three-fold higher than fossil fuels. There are several process to obtain hydrogen, amongst which biological production can be highlighted, since it could be performed at atmospheric pressures, room temperatures and applying waste materials as feedstock. Hemicellulose fraction derived from lignocellulosic biomass (C5 fraction), palm oil mill effluent (POME) and residual glycerin from biodiesel production are industrial wastes, produced in a large quantities, that have been considered promising substrates for H2 production via anaerobic fermentation. Therefore, these three different waste materials were tested as substrates for biological hydrogen (BioH2) production, using pretreated anaerobic sludge from a municipal sewage treatment plant as inoculum (35°C, pH 5.5). The yields of BioH2 obtained were: 4,45 molH2/molcarbohydrate , 2,39 molH2/gCOD and 2,2 molH2/molglycerin, for C5 fraction, POME and residual glycerin, respectively, after 24 h of anaerobic fermentation. These results show that the use of waste materials allows promising yiels of hydrogen, leading to descentralized renewable energy production, feedstock cost reduction and waste accumulation avoidance.